STRM/STRC: Forskjell mellom sideversjoner
Linje 355: | Linje 355: | ||
=====Region===== | =====Region===== | ||
A sample of the data can be [http://solli.h.uib.no/showtab.php?tabname=region viewed here] | |||
<pre class="code"> | <pre class="code"> | ||
-- | -- | ||
Linje 376: | Linje 379: | ||
=====Big regions===== | =====Big regions===== | ||
A sample of the data can be [http://solli.h.uib.no/showtab.php?tabname=bigregion viewed here] | |||
<pre class="code"> | <pre class="code"> | ||
-- | -- |
Sideversjonen fra 3. des. 2015 kl. 15:08
STRC: A coded version of STR
Standardisation in progress
The standardisation, coding, classification and conversion (coding in short) of the STR data is a work in progress (and in its infancy). The procedures below codes a larger part of the STR data and make a 5% sample available for crosstabulation.
The process starts with loading the raw data into a database. Then secondly a large number of auxilliary tables are loaded and manipulated using queries, functions, semi-coded data etc.
Thirdly the data itself is coded which creates a paralell set of coded raw data. Since the raw data consist of 6-7 million records a subset is created and made available at the internet for viewing and cross-tabulation
Standardisation using SQL
The raw data has been coded using Postgresql version 9.4 running on Ubuntu 14.04, while the online verions of the coded data has been imported on a different version of linux running postgres 9.1.
Loading main DATA
Please note that the following documentation of the import uses absolute file names. When using these routines the file location must be changed according to each users directory structure and where the data is downloaded.
Passages
If passages is downloaded from STRO using the query interface a CSV-file called passages_Year_=_YYYY.csv (e.g. YYYY=1754) will be created. The file consist of the selected passsages, first line includes field names, each field is seperated with comma and values are qouted using dobble-qoute ". Exported data is encoded in "Latin1". By mailing the STRO-group it is also possible to get larger chucks of data, however it is encoded in UTF-8, lacks field names and each field are seperated by semi-colon. The field name of all data is doorvaarten.csv. Therefore two import routines have been made, one for each of the supplied data format. Please note that the table definition are the same.
Import the complete data of passages
Passages are imported into a table named doorvaart, primary key is id_doorvaart.
-- Table structure for table 'doorvaart' -- -- DROP TABLE IF EXISTS "doorvaart"; CREATE TABLE "doorvaart" ( "id_doorvaart" INTEGER PRIMARY KEY NOT NULL, "dag" INTEGER, "maand" INTEGER, "jaar" INTEGER, "volgnummer" VARCHAR(255), "schipper_voornamen" VARCHAR(255), "schipper_patroniem" VARCHAR(255), "schipper_tussenvoegsel" VARCHAR(255), "schipper_achternaam" VARCHAR(255), "schipper_plaatsnaam" VARCHAR(255), "soort_korting" VARCHAR(255), "korting_daalder" VARCHAR(255), "korting_skilling" VARCHAR(255), "subtotaal1_daalder" VARCHAR(255), "subtotaal1_skilling" VARCHAR(255), "subtotaal2_daalder" VARCHAR(255), "subtotaal2_skilling" VARCHAR(255), "totaal_rosenobel" VARCHAR(255), "totaal_daalder" VARCHAR(255), "totaal_skilling" VARCHAR(255), "andere_muntsoort1" VARCHAR(255), "andere_muntsoort1_totaal" VARCHAR(255), "andere_muntsoort2" VARCHAR(255), "andere_muntsoort2_totaal" VARCHAR(255), "privilege" VARCHAR(255), "opmerking_bron" VARCHAR(500), "opmerking_invoerder" VARCHAR(255), "opmerking_controle" VARCHAR(255), "controle_1" VARCHAR(255), "controle_2" VARCHAR(255), "controle_3" VARCHAR(255), "naam_invoerder" VARCHAR(255), "datum_opgevoerd" VARCHAR(255), "dirnummer" VARCHAR(255), "tonnage" VARCHAR(255), "belasting_korting" VARCHAR(255), "images" VARCHAR(255), "hulp" VARCHAR(255), "hulp1" VARCHAR(255), "korting_ort" VARCHAR(255), "subtotaal1_ort" VARCHAR(255), "subtotaal2_ort" VARCHAR(255), "totaal_ort" VARCHAR(255), "hulp2" VARCHAR(255) ); COPY doorvaart FROM '/home/arne/STRM/data/doorvaarten.csv' DELIMITER ',' CSV HEADER QUOTE '"' ENCODING 'utf-8' NULL '';
Import selected and downloaded passages
The following code in Postgresql (SQL of the DBMS Postgres) imports the downloaded data into a table (relation) called doorvart. The complete code for importing all three tables, passages, cargoes and taxes can be downloaded here.
-- Table structure for table 'doorvaart' -- -- "id_doorvaart";"dag";"maand";"jaar";"volgnummer";"schipper_voornamen";"schipper_patroniem";"schipper_tussenvoegsel";"schipper_achternaam";"schipper_plaatsnaam";"soort_korting";"korting_daalder";"korting_skilling";"subtotaal1_daalder";"subtotaal1_skilling";"subtotaal2_daalder";"subtotaal2_skilling";"totaal_rosenobel";"totaal_daalder";"totaal_skilling";"andere_muntsoort1";"andere_muntsoort1_totaal";"andere_muntsoort2";"andere_muntsoort2_totaal";"privilege";"opmerking_bron";"opmerking_invoerder";"opmerking_controle";"controle_1";"controle_2";"controle_3";"naam_invoerder";"datum_opgevoerd";"dirnummer";"tonnage";"belasting_korting";"images";"hulp";"hulp1";"korting_ort";"subtotaal1_ort";"subtotaal2_ort";"totaal_ort";"hulp2" -- "410987";"29";"6";"1754";"373";"Gerrit";"";"";"Hendrichs";"Workum";"";"";"";"";"";"";"";"";"2";"";"";"";"";"";"";"";"";"";"J";"N";"N";"ERICB";"31-03-10";"226";"";"";"";"";"";"";"";"";"";""
Create table as above, then
COPY doorvaart FROM '/home/arne/STRM/data/passages_Year_=_1754.csv' DELIMITER ';' CSV HEADER QUOTE '"' ENCODING 'latin1' NULL '';
Taxes
Import all data
-- -- Table structure for table 'belastingen' -- DROP TABLE IF EXISTS "belasting"; CREATE TABLE "belasting" ( "id_doorvaart" INTEGER NOT NULL, "regel" INTEGER NOT NULL, "naam" VARCHAR(255), "muntsoort" VARCHAR(255), "hoofdbedrag" VARCHAR(255), "subbedrag" VARCHAR(255), "korting" VARCHAR(255), "hulp" VARCHAR(255), PRIMARY KEY (id_doorvaart, regel) ); COPY belasting FROM '/home/arne/STRM/data/belastingen.csv' DELIMITER ',' CSV HEADER QUOTE '"' ENCODING 'utf-8' NULL '';
Import selected data
-- -- Table structure for table 'belasting' -- -- "id_doorvaart";"regel";"naam";"muntsoort";"hoofdbedrag";"subbedrag";"korting";"hulp" -- "410987";"1";"Fyrpenge";"Daler";"2";"";"N";"" DROP TABLE IF EXISTS "belasting"; CREATE TABLE "belasting" ( "id_doorvaart" INTEGER NOT NULL, "regel" INTEGER NOT NULL, "naam" VARCHAR(255), "muntsoort" VARCHAR(255), "hoofdbedrag" VARCHAR(255), "subbedrag" VARCHAR(255), "korting" VARCHAR(255), "hulp" VARCHAR(255), PRIMARY KEY (id_doorvaart, regel) ); COPY belasting (id_doorvaart, regel, naam, muntsoort, hoofdbedrag, subbedrag, korting, hulp) FROM '/home/arne/STRM/data/taxes_Year_=_1754.csv' DELIMITER ';' CSV HEADER QUOTE '"' ENCODING 'latin1' NULL '';
Cargoes
Cargoes is imported into a table lading. In order to achieve higher performance on the later coding of data three indexes are made.
Importing all data
-- -- Table structure for table 'ladingen' -- DROP TABLE IF EXISTS "lading"; CREATE TABLE "lading" ( "id_doorvaart" INTEGER NOT NULL, "regel" INTEGER NOT NULL, "van" VARCHAR(255), "naar" VARCHAR(255), "maat" VARCHAR(255), "aantal" VARCHAR(255), "soort" VARCHAR(255), "daalder" VARCHAR(255), "skilling" VARCHAR(255), "maat_alt" VARCHAR(255), "aantal_alt" VARCHAR(255), "ort" VARCHAR(255), "hulp" VARCHAR(255), PRIMARY KEY (id_doorvaart, regel) ); COPY lading FROM '/home/arne/STRM/data/ladingen.csv' DELIMITER ',' CSV HEADER QUOTE '"' ENCODING 'utf-8' NULL '';
Importing a selected subset
-- -- Table structure for table 'lading' -- -- "id_doorvaart";"regel";"van";"naar";"maat";"aantal";"soort";"daalder";"skilling";"maat_alt";"aantal_alt";"ort";"hulp" -- "410987";"1";"Amst.";"Narva";"";"";"Ballast";"";"";"";"";"";""
Create table as above, then import
COPY lading FROM '/home/arne/STRM/data/cargoes_Year_=_1754.csv' DELIMITER ';' CSV HEADER QUOTE '"' ENCODING 'latin1' NULL '';
Loading aux DATA
In order to manage the automatic coding and converting of data a set of auxillary tables have been created. These tables could be called inverted tables, since each table consist of the unique field values for selected field, is frequency. To each of these tables standardised or coded fields will be added. Later in the coding process the uniques spelling of places, commodities, measurements etc. will be replaced by its code. This type of coding is context-insensitive, i.e. it does not take the context of the data into consideration. In a context-sensitive coding the context of the data is important, e.g. the same measurement expressed in words has a different metric value if the ship departed from Bergen or from Riga. Many measurements have this property, a scottish pound was different from a London pound. Measurements also changed over time, the length of an inch was different not only in place but changed also over time Context-insensitive coding/conversion is done purely on the meaning of the word itself and does not take time or space into consideration. The time-space conversion is done on a later stage in order to improve and make the context-sensitive coding.
Standardised place names
The standardisation of placenames have been done by George Welling (RUG) and X Y from Tresoar archive. The file all_places_standard.csv is loaded into a table named stdplaces. University of Groningen and the TRESOAR archive have standardised ports of departure, destination and shipmasters home port. By end of 2015 about 50.000 spelling variations of port names have been coded into a 6 letter alfanumeric code.
Please note that in stdplaces is using a 8 letter code, the first three letters is numeric, the three alfa (A-Z) and some places are coded with addtional 2 digits. The two digits are used if the place name consist of two different places, e.g. the ship was intended to go to Spain however it planned to go to Norway to do extra loading before sailing to Spain. This way of coding the two destion ports are not recommended, rather the two destionations should have been coded into two 6 letter codes in order to have a strict coding system. In order to achive this following procedure is done:
- Two six letter plcodes have been created
- If the placename consist of two placenames, these are automatically sepearated
Stdplaces is not part of the coded database. To get the data please contact STRO
-- Create table stdplaces -- "schipper","Aace","000000","Unknown","Unindentifiable Ports","Unknown",,"1" -- DROP TABLE IF EXISTS "stdplaces"; CREATE TABLE "stdplaces" ( plctype varchar(8), plcname varchar(255), plccod8 varchar(8), stdname varchar(255), region varchar(255), bigregion varchar(255), bfield boolean, onefield varchar(255) ); CREATE INDEX ix_pclname ON stdplaces (lower(plcname)); CREATE INDEX ix_stdname ON stdplaces (lower(stdname)); COPY stdplaces (plctype, plcname, plccod8, stdname, region, bigregion, bfield, onefield) FROM '/home/arne/STRM/data/all_places_standard.csv' DELIMITER ',' CSV HEADER QUOTE '"' ENCODING 'utf-8' NULL ''; ALTER TABLE stdplaces DROP COLUMN bfield; ALTER TABLE stdplaces DROP COLUMN onefield; ALTER TABLE stdplaces ADD COLUMN plccod varchar(6); ALTER TABLE stdplaces ADD COLUMN plcco2 varchar(6); ALTER TABLE stdplaces ADD COLUMN place varchar(255); ALTER TABLE stdplaces ADD COLUMN place2 varchar(255); UPDATE stdplaces SET plccod = substring(plccod8, 1, 6);
Port of departure
A sample of the data can be viewed here
-- -- Port of departure -- DROP TABLE IF EXISTS "portdept"; CREATE TABLE "portdept" ( id serial not null, name varchar(255), freq integer, plccod char(6), primsel integer, frgnsel integer, PRIMARY KEY (name) ); -- Using header to skip first line which contains null value COPY portdept (name, freq) FROM '/home/arne/STRM/data/ports_departure.csv' DELIMITER ',' CSV HEADER QUOTE '"' ENCODING 'utf-8' NULL '';
Port of destination
All unique spelling variations of name of port of destination and the frequency of the term.
A sample of the data can be viewed here
-- -- Port of destination -- DROP TABLE IF EXISTS "portdest"; CREATE TABLE "portdest" ( id serial not null, name varchar(255), freq integer, plccod varchar(6), frgnsel integer, primsel integer, PRIMARY KEY (name) ); -- Using header to skip first line which contains null value COPY portdest (name, freq) FROM '/home/arne/STRM/data/ports_destination.csv' DELIMITER ',' CSV HEADER QUOTE '"' ENCODING 'utf-8' NULL '';
Ship masters home port
All unique spelling variations of name of ship masters home port and the frequency of the term
A sample of the data can be viewed here
-- -- Ship masters home Port -- DROP TABLE IF EXISTS "smhport"; CREATE TABLE "smhport" ( id serial not null, name varchar(255), freq integer, plccod char(6), frgnsel integer, primsel integer, PRIMARY KEY (name) ); -- Using header to skip first line which contains null value COPY smhport (name, freq) FROM '/home/arne/STRM/data/shipmaster_home_ports.csv' DELIMITER ',' CSV HEADER QUOTE '"' ENCODING 'utf-8' NULL '';
Classifcation or Subsets created from stdplaces
Unique ports
A table of unique ports are created from all_places_standardised. The six alfanumeric code is used as identification of a unique port. The table uniqport is used during coding of geograpichal codes and classification of regions, current country etc. A select-query creates the table uniqports and afterwards new columns are added and inititated.
A sample of the data can be viewed here
-- -- Create table uniqport -- DROP TABLE IF EXISTS "uniqport" CASCADE; SELECT substring(plccod8,1, 6) AS plccod, min(stdname) AS stdname, min(region) as region, min(bigregion) as bigregion INTO uniqport FROM stdplaces where (stdname is NOT NULL) GROUP BY substring(plccod8,1, 6); ALTER TABLE uniqport ADD COLUMN currcntry varchar(25); ALTER TABLE uniqport ADD COLUMN eastwest char(2); ALTER TABLE uniqport ADD COLUMN primsel integer; ALTER TABLE uniqport ADD PRIMARY KEY(plccod); UPDATE uniqport set currcntry = region where ((region='Norway') or (region='Scotland') or (region='Italy') or (region='Ireland') or (region='Denmark')); UPDATE uniqport set currcntry = region where ((region='Spain') or (region='Esthonia') or (region='Iceland') or (region='Portugal') or (region='The Netherlands')); UPDATE uniqport set currcntry = 'France' where (region LIKE 'France%'); UPDATE uniqport set currcntry = 'Germany' where (region LIKE 'Hamburg%'); UPDATE uniqport set primsel=0; UPDATE portdept SET plccod = stdplaces.plccod FROM stdplaces WHERE stdplaces.plcname=portdept.name; UPDATE portdest SET plccod = stdplaces.plccod FROM stdplaces WHERE stdplaces.plcname=portdest.name; UPDATE smhport SET plccod = stdplaces.plccod FROM stdplaces WHERE stdplaces.plcname=smhport.name;
Region
A sample of the data can be viewed here
-- -- Create table region -- DROP TABLE IF EXISTS "region"; SELECT region as name, count(region) as freq, min(bigregion) as bigregion INTO region FROM stdplaces where (region is NOT NULL) GROUP BY region; ALTER TABLE region ADD COLUMN currcntry varchar(25); ALTER TABLE region ADD COLUMN eastwest char(1); ALTER TABLE region ADD PRIMARY KEY(name); UPDATE region set eastwest = bigregion.eastwest FROM bigregion where bigregion.name=region.bigregion; UPDATE region set eastwest = 'W' where ((name like 'The Neth%') or (name='Norway') or (name like '%Medi%') or (name like 'Engl%') or (name like '%Atla%')); UPDATE region set eastwest = 'E' where (name like '%Baltic%'); UPDATE uniqport set eastwest = region.eastwest from region where uniqport.region = region.name;
Big regions
A sample of the data can be viewed here
-- -- Create table bigregion -- DROP TABLE IF EXISTS "bigregion"; SELECT bigregion as name, count(bigregion) as freq, min(region) as minregion, max(region) as maxregion INTO bigregion FROM stdplaces where (bigregion is NOT NULL) GROUP BY bigregion; ALTER TABLE bigregion ADD COLUMN eastwest char(1); ALTER TABLE bigregion ADD PRIMARY KEY(name); UPDATE bigregion set eastwest = 'W' where ((name like 'Dutc%') or (name like 'Nor%') or (name like '%Medi%') or (name like 'Great%') or (name like '%Amer%') or (name like '%Atla%') or (name like 'Ice%') or (name like 'Arc%') or (name like '%Far East%') or (name like 'West%')); UPDATE bigregion set eastwest = 'E' where (name like '%Baltic%');
Creating functions
In order to convert fractions to decimal numbers, and to split combined fields like placenames or commodities three general functions have been created
splitog (s, splitstring, fieldno) as text: Takes a input, e.g. destination port "København og Riga" or commodities "Silke og bommuld" and split the string into two. Input is the text to be split, second the split
argument and thirdly which part to return, first or second
create or replace function splitog(varchar,varchar,integer) returns text as $$ declare p integer; X text; sub text; nret integer; lsub integer; begin X := trim(both $1::text); sub:= $2::text; nret := $3::integer; lsub := length(sub); if ((X='') or (X='-')) then return null; end if; p := 0; p := strpos(X, sub); if (p>1) then if nret=1 then X := trim(both substr(X,1,p)); else X := trim(both substr(X, p+lsub,length(X))); end if; end if; return X::text; EXCEPTION WHEN invalid_text_representation then return null; end; $$ language plpgsql immutable strict;
frac2num (s text) as double precision: Takes a string input, e.g. '2 3/4' and converts the text into 2.75.
create or replace function frac2num(varchar) returns float8 as $$ declare p integer; n float8; num float8; den float8; X text; begin X := trim(both $1::text); if ((X='') or (X='-')) then return null; end if; p := 0; n := 0; p := strpos(X, '/'); if (p=0) then p:=strpos(X, ' '); if p>0 then n := (left(X,p-1))::float8; else n:=X::float8; end if; else den:=(substr(X,p+1))::float8; if (p<2) and not (check_numeric(X)) then return null; end if; X := trim(left(X, p-1)); p := strpos(X,' '); if p=0 then num := x::float8; else num := (substr(X, p+1, length(X)))::float8; n := (left(X,p-1))::float8; end if; end if; if den<>0 then n := n + (num / den); end if; return n::float8; EXCEPTION WHEN invalid_text_representation then return null; end; $$ language plpgsql immutable strict;
check_numeric (s as varchar) as boolean: Takes a string text as input and check if it is a legal number.
-- create or replace function check_numeric(varchar) returns bool as $$ declare i numeric; begin i := $1::numeric; return 't'::bool; EXCEPTION WHEN invalid_text_representation then return 'f'::bool; end; $$ language plpgsql immutable strict;
Coding raw data
Extraction of a sample
Classification systems by Nina Bang
- Nina E. Bangs classification of commodities converted into a database table.
- Nina E. Bangs coding of ports (departure, port of intended destination, shipmaster home port)
- Converted into a database table. Download as XLS. Download as DBF.
- Download the list of ports as geocoded GIS file (ArcGIS). Download as DBF